Syllabus of Big Data Analytics Course In Bangalore
Module 1: Introduction to Big Data
- Understanding the concept of Big Data
- Characteristics, sources, and challenges of Big Data
- Overview of Big Data technologies and tools
Module 2: Data Collection and Storage
- Data collection methods and sources
- Data preprocessing and cleaning techniques
- Introduction to distributed storage systems
Module 3: Data Processing with Hadoop
- Introduction to the Hadoop ecosystem
- Hadoop MapReduce framework
- Writing MapReduce programs
- Introduction to Apache Spark for data processing
Module 4: NoSQL Databases
- Introduction to NoSQL databases
- Types of NoSQL databases
- Data modeling in NoSQL databases
Module 5: Data Analysis with Python
- Data analysis libraries in Python
- Exploratory data analysis (EDA) techniques
- Data visualization with Matplotlib and Seaborn
Module 6: Machine Learning for Big Data
- Introduction to machine learning
- Scaling machine learning algorithms for Big Data
- Implementing models with Apache Spark MLlib
Module 7: Data Warehousing and SQL for Big Data
- Introduction to data warehousing concepts
- SQL for querying and managing large datasets
- Data warehousing solutions
Module 8: Real-time Data Streaming
- Introduction to real-time data processing
- Apache Kafka for data streaming
- Stream processing with Apache Flink or Apache Storm
Module 9: Big Data Visualization
- Data visualization principles
- Tools for creating interactive data visualizations
- Dashboard design and best practices