SQL Server Tutorial: Defined, Explained, & Explored For Free | ACTE
SQL Server Tutorial

SQL Server Tutorial: Defined, Explained, & Explored For Free

Last updated on 09th Jul 2020, Blog, Tutorials

About author

Vinoth (Kafka Developer )

Vinoth has expertise in Kafka Stream, KSQL, Aws, typescript, javascript, MySQL, Java, Spring Boot, API . He is certified professionals with 7+ years of experience in their respective domain.

(5.0) | 17547 Ratings 1170

Microsoft SQL Server is a relational database management system. It supports the Structured Query language and comes with its own implementation of the SQL language which is the Transact-SQL(T-SQL). It has an integrated environment to handle SQL databases, which is the SQL Server Management Studio.

The key components of SQL Server are as follows:

  • Database Engine: This component handle storage, Rapid transaction Processing, and Securing Data.
  • SQL Server –  This service is used to start, stop, pause and continue the instance of MS SQL Server.
  • SQL Server Agent –  The Server Agent service plays the role of task scheduler and is triggered by any event or as per the requirement.
  • SQL Server Browser – This service is used to connect the incoming request to the desired SQL Server instance.
  • SQL Server Full-Text Search – Used to let the user run full-text queries against the character data in SQL tables.
  • SQL Server VSS Writer – Allows backups and restoration of data files when the SQL Server does not run.
  • SQL Server Analysis Services(SSAS)  – This service is used to provide data analysis, data mining and machine learning capabilities. The SQL Server is also integrated with Python and R for advanced data analytics.
  • SQL Server Reporting Services (SSRS) – As the name suggests, this service is used to provide features and decision-making capabilities including integration with Hadoop.
  • SQL Server Integration Services (SSIS) – This service is used to perform the ETL operations for different types of data from multiple sources of data.
Subscribe For Free Demo

[custom_views_post_title]

Now, that you know what is MS SQL Server, let us move forward in this article on the SQL Server tutorial and understand how to install and setup the SQL Server.

 Install SQL Server

Once the download completes, you double-click the file SQLServer2017-SSEI-Dev.exe to launch the installer.

1. The installer asks you to select the installation type, choose the Custom installation type allows you to step through the SQL Server installation wizard and select the features that you want to install.

SQL Server Tutorial

2. Specify the folder for storing the installation files that the installer will download, then click the Install button.

SQL Server Tutorial

3. The installer starts downloading the install package for a while.

SQL Server Tutorial

4. Once the download completes, open the folder that stores the install package and double-click the SETUP.exe file.

SQL Server Tutorial

5. The following window displays; select the installation option on the left.

SQL Server Tutorial

6. Click the first link to launch a wizard to install SQL Server 2017.

SQL Server Tutorial

7. Specify the edition that you want to install, select Developer edition and click the Next button.

SQL Server Tutorial

8. Select the “I accept the license terms.” and click the Next button.

SQL Server Tutorial

9.  Check the “Use Microsoft Update to check for updates (recommended)” to get the security and other important updates for the SQL Server and click the Next button.

SQL Server Tutorial

10. The installation checks for the prerequisites before installation. If no error found, click the Next button.

SQL Server Tutorial

11. Select the features that you want to install. For now, you just need the Database Engine Services, just check the checkbox and click the Next button to continue

SQL Server Tutorial

12. Specify the name and install ID for the instance of the SQL Server and click the Next button.

SQL Server Tutorial

13.  Specify the service account and collation configuration. Just use the default configuration and click the Next button.

SQL Server Tutorial

14. Specify the database engine security mode. First, choose Mixed Mode. Next, enter the password for the SQL Server system administrator (sa) account. Then, re-enter the same password to confirm it. After that, click the Add Current User button. Finally, click the Next button.

SQL Server Tutorial

15. Verify the SQL Server 2017 features to be installed:

SQL Server Tutorial

16. The installer starts the installation process

SQL Server Tutorial

17. Once it completes, the following window displays. Click the OK button.

SQL Server Tutorial

18. Click the Close button to complete the installation

SQL Server Tutorial

Congratulation!  you have successfully installed SQL Server Developer Edition.

SQL Server Architecture Explained: Named Pipes, Optimizer, Buffer Manager

MS SQL Server is a client-server architecture. MS SQL Server process starts with the client application sending a request. The SQL Server accepts, processes and replies to the request with processed data. Let’s discuss in detail the entire architecture shown below:

As the below Diagram depicts there are three major components in SQL Server Architecture:

1.   Protocol Layer

2.   Relational Engine

3.   Storage Engine

Protocol Layer – SNI

MS SQL SERVER PROTOCOL LAYER supports 3 Type of Client Server Architecture. We will start with “Three Type of Client Server Architecture” which MS SQL Server supports.

Course Curriculum

Learn SQL Server Certification Course to Advance Your Career

Weekday / Weekend BatchesSee Batch Details

Shared Memory

Let’s reconsider an early morning Conversation scenario.

SQL Server Tutorial

MOM and TOM – Here Tom and his Mom, were at the same logical place, i.e. at their home. Tom was able to ask for Coffee and Mom was able it serve it hot.

MS SQL SERVER – Here MS SQL server provides SHARED MEMORY PROTOCOL. Here CLIENT and MS SQL server run on the same machine. Both can communicate via Shared Memory protocol.

Analogy: Lets map entities in the above two scenarios. We can easily map Tom to Client, Mom to SQL server, Home to Machine, and Verbal Communication to Shared Memory Protocol.

From the desk of configuration and installation:

For Connection to Local DB – In SQL Management Studio, “Server Name” Option could be

“.”

“localhost”

“127.0.0.1”

“Machine\Instance”

SQL Server Tutorial

TCP/IP

Now consider in the evening, Tom is in the party mood. He wants a Coffee ordered from a well-known Coffee Shop. The Coffee shop is located 10 km away from his home.

SQL Server Tutorial

Here Tom and Starbuck are in different physical location. Tom at home and Starbucks at the busy marketplace. They’re communicating via Cellular network. Similarly, MS SQL SERVER provides the capability to interact via TCP/IP protocol, where CLIENT and MS SQL Server are remote to each other and installed on a separate machine.

Analogy: Lets map entities in the above two scenarios. We can easily map Tom to Client, Starbuck to SQL server, the Home/Market place to Remote location and finally Cellular network to TCP/IP protocol.

Notes from the desk of Configuration/installation:

  • In SQL Management Studio – For Connection via TCP\IP, “Server Name” Option has to be “Machine\Instance of the server.”
  • SQL server uses port 1433 in TCP/IP.
SQL Server Tutorial

Named Pipes

Now finally at night, Tom wanted to have a light green tea which her neighbor, Sierra prepare very well.

SQL Server Tutorial

Here Tom and his Neighbor, Sierra, are in same physical location, being each other’s neighbor. They’re communicating via Intra network. Similarly, MS SQL SERVER provides the capability to interact via the Named Pipe protocol. Here the CLIENT and MS SQL SERVER are in connection via LAN.

Analogy: Lets map entities in the above two scenarios. We can easily map Tom to Client, Sierra to SQL server, Neighbor to LAN and finally Intra network to Named Pipe Protocol.

Notes from the desk of Configuration/installation:

  • For Connection via Named Pipe. This option is disabled by default and needs to be enabled by the SQL Configuration Manager.

What is TDS?

Now that we know that there are three types of Client-Server Architecture, lets us have a glance at TDS:

  • TDS stands for Tabular Data Stream.
  • All 3 protocols use TDS packets. TDS is encapsulated in Network packets. This enables data transfer from the client machine to the server machine.
  • TDS was first developed by Sybase and is now Owned by Microsoft

Relational Engine

The Relational Engine is also known as the Query Processor. It has the SQL Server components that determine what exactly a query needs to do and how it can be done best. It is responsible for the execution of user queries by requesting data from the storage engine and processing the results that are returned.

As depicted in the Architectural Diagram there are 3 major components of the Relational Engine. Let’s study the components in detail:

CMD Parser

Data once received from Protocol Layer is then passed to Relational Engine. “CMD Parser” is the first component of Relational Engine to receive the Query data. The principal job of CMD Parser is to check the query for Syntactic and Semantic error. Finally, it generates a Query Tree. Let’s discuss in detail.

SQL Server Tutorial

Syntactic check:

  • Like every other Programming language, MS SQL also has the predefined set of Keywords. Also, SQL Server has its own grammar which SQL server understands.
  • SELECT, INSERT, UPDATE, and many others belong to MS SQL predefined Keyword lists.
  • CMD Parser does syntactic check. If users’ input does not follow these language syntax or grammar rules, it returns an error.

Example: Let’s say a Russian went to a Japanese restaurant. He orders fast food in the Russian language. Unfortunately, the waiter only understands Japanese. What would be the most obvious result?

The Answer is – the waiter is unable to process the order further.

There should not be any deviation in Grammar or language which SQL server accepts. If there are, SQL server cannot process it and hence will return an error message.

We will learn about MS SQL query more in upcoming tutorials. Yet, consider below most basic Query Syntax as

SELECT * from <TABLE_NAME>;

Now, to get the perception of what syntactic does, say if the user runs the basic query as below:

SELECR * from <TABLE_NAME>

Note that instead of ‘SELECT’ user typed “SELECR.”

Result: THE CMD Parser will parse this statement and will throw the error message. As “SELECR” does not follow the predefined keyword name and grammar. Here CMD Parser was expecting “SELECT.”

Semantic check:

  • This is performed by Normalizer.
  • In its simplest form, it checks whether Column name, Table name being queried exist in Schema. And if it exists, bind it to Query. This is also known as Binding.
  • Complexity increases when user queries contain VIEW. Normalizer performs the replacement with the internally stored view definition and much more.

Let’s understand this with help of below example –

SELECT * from USER_ID

Result: THE CMD Parser will parse this statement for Semantic check. The parser will throw an error message as Normalizer will not find the requested table (USER_ID) as it does not exist.

Create Query Tree:

  • This step generates different execution tree in which query can be run.
  • Note that, all the different trees have the same desired output.

Optimizer

The work of the optimizer is to create an execution plan for the user’s query. This is the plan that will determine how the user query will be executed.

Note that not all queries are optimized. Optimization is done for DML (Data Modification Language) commands like SELECT, INSERT, DELETE, and UPDATE. Such queries are first marked then send to the optimizer. DDL commands like CREATE and ALTER are not optimized, but they are instead compiled into an internal form. The query cost is calculated based on factors like CPU usage, Memory usage, and Input/ Output needs.

Optimizer’s role is to find the cheapest, not the best, cost-effective execution plan.

Before we Jump into more technical detail of Optimizer consider below real-life example:

Example:

Let’s say, you want to open an online Bank account. You already know about one Bank which takes a maximum of 2 Days to open an account. But, you also have a list of 20 other banks, which may or may not take less than 2 days. You can start engaging with these banks to determine which banks take less than 2 days. Now, you may not find a bank which takes less than 2 Days, and there is additional time lost due to the search activity itself. It would have been better to open an account with the first bank itself.

It’s is more important to select wisely. To be precise, choose which option is best, not the cheapest.

Similarly, MS SQL Optimizer works on inbuilt exhaustive/heuristic algorithms. The goal is to minimize query run time. All the Optimizer algorithms are propriety of Microsoft and a secret. Although, below are the high-level steps performed by MS SQL Optimizer. Searches of Optimization follows three phases as shown in the below diagram:

SQL Server Tutorial

Phase 0: Search for Trivial Plan:

  • This is also known as Pre-optimization stage.
  • For some cases, there could be only one practical, workable plan, known as a trivial plan. There is no need for creating an optimized plan. The reason is, searching more would result in finding the same run time execution plan. That too with the extra cost of Searching for optimized Plan which was not required at all.
  • If no Trivial plan found, then 1st Phase starts.
Course Curriculum

Get Experts Curated Microsoft SQL Server Training From Real-Time Experts

  • Instructor-led Sessions
  • Real-life Case Studies
  • Assignments
Explore Curriculum

Phase 1: Search for Transaction processing plans

  • This includes the search for Simple and Complex Plan.
  • Simple Plan Search: Past Data of column and Index involved in Query, will be used for Statistical Analysis. This usually consists but not restricted to one Index Per table.
  • Still, if the simple plan is not found, then more complex Plan is searched. It involves Multiple Index per table.

Phase 2: Parallel Processing and Optimization.

  • If none of the above strategies work, Optimizer searches for Parallel Processing possibilities. This depends on the Machine’s processing capabilities and configuration.
  • If that is still not possible, then the final optimization phase starts. Now, the final optimization aim is finding all other possible options for executing the query in the best way. Final optimization phase Algorithms are Microsoft Propriety.

Query Executor

SQL Server Tutorial

Query executer calls Access Method. It provides an execution plan for data fetching logic required for execution. Once data is received from Storage Engine, the result gets published to the Protocol layer. Finally, data is sent to the end user.

Storage Engine

The work of the Storage Engine is to store data in a storage system like Disk or SAN and retrieve the data when needed. Before we deep dive into Storage engine, let’s have a look at how data is stored in Database and type of files available.

Data File and Extent:

SQL Server Tutorial

Data File, physically stores data in the form of data pages, with each data page having a size of 8KB, forming the smallest storage unit in SQL Server. These data pages are logically grouped to form extents. No object is assigned a page in SQL Server.

The maintenance of the object is done via extents. The page has a section called the Page Header with a size of 96 bytes, carrying the metadata information about the page like the Page Type, Page Number, Size of Used Space, Size of Free Space, and Pointer to the next page and previous page, etc.

File types

SQL Server Tutorial

1.   Primary file

  • Every database contains one Primary file.
  • This store all important data related to tables, views, Triggers, etc.
  • Extension is .mdf usually but can be of any extension.

2.   Secondary file

  • Database may or may not contains multiple Secondary files.
  • This is optional and contain user-specific data.
  • Extension is .ndf usually but can be of any extension.

3.   Log file

  • Also known as Write ahead logs.
  • Extension is .ldf
  • Used for Transaction Management.
  • This is used to recover from any unwanted instances. Perform important task of Rollback to uncommitted transactions.

Storage Engine has 3 components; let’s look into them in detail.

Access Method

It acts as an interface between query executor and Buffer Manager/Transaction Logs.

Access Method itself does not do any execution.

The first action is to determine whether the query is:

1.   Select Statement (DDL)

2.   Non- Select Statement (DDL & DML)

Depending upon the result, the Access Method takes the following steps:

1.   If the query is DDL, SELECT statement, the query is pass to the Buffer Manager for further processing.

2.   And if query if DDL, NON-SELECT statement, the query is pass to Transaction Manager. This mostly includes the UPDATE statement.

SQL Server Tutorial

Buffer Manager

Buffer manager manages core functions for modules below:

  • Plan Cache
  • Data Parsing: Buffer cache & Data storage
  • Dirty Page

We will learn Plan, Buffer and Data cache in this section. We will cover Dirty pages in the Transaction section.

SQL Server Tutorial

Plan Cache

  • Existing Query plan: The buffer manager checks if the execution plan is there in the stored Plan Cache. If Yes, then query plan cache and its associated data cache is used.
  • First time Cache plan: Where does existing Plan cache come from?

If the first-time query execution plan is being run and is complex, it makes sense to store it in in the Plane cache. This will ensure faster availability when the next time SQL server gets the same query. So, it’s nothing else but the query itself which Plan execution is being stored if it is being run for the first time.

Data Parsing: Buffer cache & Data Storage

Buffer manager provides access to the data required. Below two approaches are possible depending upon whether data exist in the data cache or not:

Buffer Cache – Soft Parsing:

SQL Server Tutorial

Buffer Manager looks for Data in Buffer in Data cache. If present, then this Data is used by Query Executor. This improves the performance as the number of I/O operation is reduced when fetching data from the cache as compared to fetching data from Data storage.

Data Storage – Hard Parsing:

SQL Server Tutorial

If data is not present in Buffer Manager than required Data is searched in Data Storage. If also stores data in the data cache for future use.

Dirty Page

It is stored as a processing logic of Transaction Manager. We will learn in detail in Transaction Manager section.

Transaction Manager

SQL Server Tutorial

Transaction Manager is invoked when access method determines that Query is a Non-Select statement.

Log Manager

  • Log Manager keeps a track of all updates done in the system via logs in Transaction Logs.
  • Logs have Logs Sequence Number with the Transaction ID and Data Modification Record.
  • This is used for keeping track of Transaction Committed and Transaction Rollback.

Lock Manager

  • During Transaction, the associated data in Data Storage is in the Lock state. This process is handled by Lock Manager.
  • This process ensures data consistency and isolation. Also known as ACID properties.

Execution Process

  • Log Manager start logging and Lock Manager locks the associated data.
  • Data’s copy is maintained in the Buffer cache.
  • Copy of data supposed to be updated is maintained in Log buffer and all the events updates data in Data buffer.
  • Pages which store the data is also known as Dirty Pages.
  • Checkpoint and Write-Ahead Logging: This process run and mark all the page from Dirty Pages to Disk, but the page remains in the cache. Frequency is approximately 1 run per minute.But the page is first pushed to Data page of the log file from Buffer log. This is known as Write Ahead Logging.
  • Lazy Writer: The Dirty page can remain in memory. When SQL server observes a huge load and Buffer memory is needed for a new transaction, it frees up Dirty Pages from the cache. It operates on LRU – Least recently used Algorithm for cleaning page from buffer pool to disk.

SQL Server Architecture Diagram

SQL Sample Resumes! Download & Edit, Get Noticed by Top Employers! Download

Conclusion

 In this tutorial, you have learned how to use SQL Server Integration Services (SSIS), Master Data Services (MDS), and Data Quality Services (DQS) together to implement a sample Enterprise Information Management (EIM) solution. First, you used the Data Quality Client tool to create a DQS knowledge base with the knowledge about suppliers, cleansed the input supplier data in an excel file against the knowledge base, and then matched the supplier data by using a matching policy in the knowledge base to identify and remove duplicates in the data. Next, by using the MDS Add-in for Excel, you stored the cleansed and matched supplier list in MDS. Finally, you automated the whole process of receiving input data, cleansing and matching the data, and storing the master data in MDS by creating an SSIS solution.

Are you looking training with Right Jobs?

Contact Us
Get Training Quote for Free